π Optical Neuromorphic Eikonal Solver
GPU-accelerated pathfinding with 30-300Γ speedup!
This demo shows pathfinding with basic CPU Dijkstra for comparison. The full GPU solver is 30-300Γ faster using neuromorphic computing principles.
π Full implementation: GitHub
βοΈ Configuration
64 512
0 50
π Source (Red)
0 255
0 255
π― Target (Blue)
0 255
0 255
πΊοΈ Pathfinding Visualization
Click 'Find Path' to calculate optimal route
π Resources & Links
- Paper (HTML): Full Academic Paper
- Source Code: GitHub Repository
- Datasets: HuggingFace
- OpenML: Datasets #47114-47118
- W&B Metrics: Weights & Biases
π Benchmark Results
| Grid Size | GPU Time | CPU Time | Speedup | Accuracy | Path Quality |
|---|---|---|---|---|---|
| 128Γ128 | 2.3 ms | 73.9 ms | 32Γ | 0.52% error | 1.004Γ optimal |
| 256Γ256 | 3.1 ms | 275.5 ms | 89Γ | 0.55% error | 1.015Γ optimal |
| 512Γ512 | 4.1 ms | 948.9 ms | 231Γ | 0.69% error | 1.042Γ optimal |
| Average | 3.3 ms | 505 ms | 135Γ | 0.64% error | 1.025Γ optimal |
π§ How It Works
The GPU solver uses neuromorphic computing principles:
- Each grid cell maintains 4 directional memory states (N, E, S, W)
- Information propagates like waves through the medium
- All cells update in parallel on GPU (massively parallel)
- System converges to optimal solution in ~2n iterations
- No priority queues β Full parallelization
π€ Author
Francisco Angulo de Lafuente
π Citation
If you use this work, please cite:
@software{angulo2025optical,
author = {Angulo de Lafuente, Francisco},
title = {Optical Neuromorphic Eikonal Solver},
year = {2025},
url = {https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver}
}